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Fourier’s Law confirmed for a class of small quantum systems
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Abstract. Within the Lindblad formalism we consider an interacting spin chain coupled locally to heat
baths. We investigate the dependence of the energy transport on the type of interaction in the system as
well as on the overall interaction strength. For a large class of couplings we find a normal heat conduction
and confirm Fourier’s Law. In a fully quantum mechanical approach linear transport behavior appears to
be generic even for small quantum systems.

PACS. 05.60.Gg Quantum transport – 05.30.-d Quantum statistical mechanics – 05.70.Ln Nonequilibrium
and irreversible thermodynamics

1 Introduction

Heat conduction in condensed matter, especially in in-
sulators, is a long standing problem which has attracted
renewed interest recently. In the classical understanding,
heat conduction in insulators results from phonon scat-
tering. This process is an anharmonic effect of the lat-
tice. There are two different scattering types, the normal
or N-processes and so called U-processes. N-processes are
momentum conserving and cannot affect the heat conduc-
tion of the solid state. Only the second type of scattering,
the U-processes, should give rise to a finite heat conductiv-
ity: In such processes momentum is conserved only modulo
a reciprocal lattice vector [7,9,10,15]. For very low tem-
peratures these U-processes rapidly die out and the heat
conductivity diverges. In this case only impurities may
limit the heat conductivity.

Recently, a series of articles have addressed heat con-
duction and Fourier’s law in one dimensional systems. It
has been found that regular heat conduction (non van-
ishing local gradient of temperature) does not occur nat-
urally in the Hamilton models considered: Most of these
have been classical one-dimensional systems coupled via
different interactions [1,5,14]. Note that because of the
lack of phonon scattering, a harmonically coupled chain
cannot have a finite heat conductance [13]. It is necessary
to take an anharmonic potential into consideration.

Heat conduction is a problem of non-equilibrium ther-
modynamics in which equilibrium properties hold at most
locally. The equilibrium thermodynamics of small sys-
tems can be given a quantum mechanical foundation [2–4]
and therefore it is tempting to expect non-equilibrium
behavior also to follow directly from quantum mechan-
ics. Indeed, in one-dimensional quantum systems strong
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indications have been found for a normal heat conduc-
tion [11,12]. But it is not clear yet which conditions a
system has to fulfill in order to exhibit local thermody-
namical behavior. Especially the dependency of heat con-
duction on the type of internal couplings within the sys-
tem have not been investigated in full detail. There are
systems showing a normal heat conductance [11,12] and
others where the conductivity diverges [5] (vanishing tem-
perature gradient). Unfortunately, even the concept of lo-
cal thermodynamical quantities such as local temperature
or local energy easily becomes ambiguous. Nevertheless it
is inevitable to discuss these questions carefully in the con-
text of heat conduction models, since the results depend
crucially on the underlying concepts.

To analyze the conditions of thermodynamical behav-
ior in small systems we study a one-dimensional quantum
system coupled to heat reservoirs. The building blocks
(here N = 4 − 6 spins) of the system are internally cou-
pled with different types of interactions. Traditionally,
thermodynamical behavior is expected for large systems
(N → ∞), smaller quantum systems are thought to tend
to deviate from thermodynamical behavior. However we
could find normal heat conduction even for very small sys-
tems (N = 4). We consider a Förster coupling alone and
together with a non-resonant coupling and we introduce a
random coupling, too, to test the generality of thermody-
namical behavior. Additionally, we investigate the trans-
port behavior with respect to different coupling strengths.
For these various cases we find diverse transport behavior
and therefore means to specify conditions a system has to
fulfill in order to show a normal transport behavior.

2 Model

We consider an open quantum system, a chain of N
subsystems with n levels each, with nearest neighbor
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interactions (cf. [6,8]). The Hamiltonian H of the system
thus reads

H =
N∑

µ=1

H(loc)(µ) +
λ

I

N−1∑
µ=1

H(int)
µ,µ+1. (1)

Here, the terms of the first sum represent equidistant n-
level subsystems. The second term accounts for pair-inter-
actions between two adjacent subsystems, with an overall
coupling strength λ. For λ to characterize the absolute
interaction strength it is necessary to normalize the dif-
ferent interaction types by I, the mean absolute value of
interaction matrix elements, i.e.

I2 =
1

n2N
Tr



(

N−1∑
µ=1

H(int)
µ,µ+1

)2

 . (2)

For n = 2 (spins) it is possible to use as a set of ba-
sis operators the Pauli spin operators σ̂i (i = 0, x, y, z). In
terms of these operators the local Hamiltonian of a subsys-
tem µ with an energy spacing ∆E = 1 can be written as

H(loc)(µ) =
1
2
σ̂z(µ). (3)

The spins are coupled with alternative types of next
neighbor interactions (see [6]): a non-resonant diagonal
interaction

H(NR)
µ,µ+1 = CNR σ̂z(µ) ⊗ σ̂z(µ + 1), (4)

a resonant energy transfer interaction (Förster-Coupling)

H(F)
µ,µ+1 =

CF

2

(
σ̂x(µ) ⊗ σ̂x(µ + 1)

+ σ̂y(µ) ⊗ σ̂y(µ + 1)
)
, (5)

where CNR and CF can be used to adjust the relative
strength, or a totally random next neighbor interaction

H(R)
µ,µ+1 =

3∑
i=1

3∑
j=1

pij σ̂i(µ) ⊗ σ̂j(µ + 1) (6)

with normal distributed random numbers pij (variance 1).
Note that pij is independent of µ (no disorder). The ran-
dom interaction is supposed to model “typical interac-
tions” without any bias.

To model the influence of a heat bath, we use the Lind-
blad formalism: The standard Liouville equation is supple-
mented by an incoherent damping term (see, e.g., [6]):

dρ̂

dt
= −i [H, ρ̂] + L(B)ρ̂

= Lρ̂. (7)

For the local coupling of spin µ of the chain to a bath we
expand in terms of raising and lowering operators:

L(B)ρ̂ =
W1→0

2
(
2σ̂−

µ ρ̂σ̂+
µ − ρ̂σ̂+

µ σ̂−
µ − σ̂+

µ σ̂−
µ ρ̂
)

+
W0→1

2
(
2σ̂+

µ ρ̂σ̂−
µ − ρ̂σ̂−

µ σ̂+
µ − σ̂−

µ σ̂+
µ ρ̂
)

(8)

where the first term describes a decay from |1〉 → |0〉
with rate W1→0 and the second from |0〉 → |1〉 with
W0→1 < W1→0. The properties of the environment (bath)
only enter via these two rates.

If the bath was brought in contact with a single spin,
the spin would relax to the stationary state:

ρ̂stat =
1

W1→0 + W0→1

(
W1→0 0

0 W0→1

)
. (9)

Interpreting this state as the result of thermal equilibrium,
where T̃ is defined via the Boltzmann distribution

W0→1

W1→0
= e−

∆E

T̃ . (10)

Operationally, we can associate the temperature T̃ with
the temperature of the bath T̃ (B) = T̃ measured in units
of ∆E. With (10) and the normalization W1→0 +W0→1 =
λ(B) it is possible to rewrite the rates in terms of the cou-
pling strength λ(B) and the bath temperature T̃ (B):

W0→1 =
1

1 + e
1

T̃ (B)

λ(B), W1→0 =
1

1 + e−
1

T̃(B)

λ(B). (11)

To measure the local temperature of a spin µ in the
chain we use the mean excitation energy

T (µ) = Tr
{
ρ̂(µ)H(loc)(µ)

}
. (12)

Of the respective spin (0 ≤ T (µ) ≤ 0.5). H(loc)(µ)
and thus T (µ) are defined in units of ∆E, ρ̂(µ) is
the corresponding reduced density operator. This T (µ)
is a well-defined local quantity, irrespective of further
couplings [16]. For consistency reasons we define the tem-
perature of the bath now as the mean energy a single spin
coupled to this bath would have

T (B) = Tr
{
ρ̂(1)H(loc)(1)

}
=

W0→1

λ(B)
=

1

1 + e
1

T̃ (B)

· (13)

Rather than applying iterative numerical meth-
ods (e.g. Runge-Kutta) to integrate the Liouville equa-
tion, we diagonalize the Liouville operator L (see Eq. (7))
of the whole open system. We thus obtain the exact so-
lution of equation (7) at all times and without iterative
numerical errors.

3 Single bath

In order to investigate whether full thermodynamical equi-
librium may be reached for a chain model coupled only
at one border to a heat reservoir as mentioned in the
last section, we consider a system of N = 4 spins, where
the first spin (µ = 1) is coupled to a thermal bath. The
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Fig. 1. Temperature profile: N = 4 spins coupled by a random
interaction (of internal coupling strength λ = 0.01, 0.3, 10);
first spin µ = 1 is coupled to a bath with coupling strength
λ(B) = 0.01 and a temperature T (B) ≈ 0.27 (line in the box
marks the temperature of the bath).

temperature of the bath is still defined by the two con-
stants W1→0 and W0→1 as mentioned in the last sec-
tion (T̃ (B) = 1 ⇒ T (B) ≈ 0.27 cf. (13)). We choose
the coupling strength of the first spin to the bath to be
weak (λ(B) = 0.01).

Firstly the coupling between nearest neighbor spins is
taken as the random interaction H(R). From the station-
ary state of the system we compute the reduced density
operators of each spin ρ̂(µ) and the appropriate tempera-
tures based on equation (12). The final state is indepen-
dent of the initial state but not of the internal coupling
strength λ. For very small λ = 0.01 the temperature pro-
file is flat (see Fig. 1) while for λ = 0.3 the spins do no
longer have the same temperature. In case of very strong
interactions, λ = 10, the individual spins are in a totally
mixed state and the whole system is highly entangled.

As a locally defined thermal equilibrium state for such
a system one may expect the (separable) product state:

ρ̂eq =
⊗

µ

ρ̂stat(µ). (14)

To measure the distance between the actual final state ρ̂f

and this expected state ρ̂eq we use

Df = Tr
{
(ρ̂eq − ρ̂f)2

}
. (15)

In Figure 2 we vary λ = 0.01...1.3 for different random
interactions and evaluate the corresponding distance to
the equilibrium state ρ̂eq in a N = 4 spin chain. For de-
creasing λ we find that the resulting ρ̂f is indeed coming
closer to the expected stationary state. For very strong
interactions we find that the final state is very close to
the totally mixed state (D1̂ = Tr{(ρ̂eq − 1

nN 1̂)2} = 0.073).
Qualitatively all the random interactions show the same
behavior.

However, if we considered instead of the random inter-
action the case CNR = CF = 1 (Förster and non-resonant
coupling) we would not get any dependence on the in-
ternal interaction strength λ: Irrespective of λ all spins
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Fig. 2. Distance Df between the expected equilibrium state ρ̂eq

and the final state ρ̂f in dependence of interaction strength λ
for six different random interaction in a N = 4 spin chain.

of the system have exactly the same temperature as the
heat bath.

In conclusion we always get thermodynamical behavior
for the special case of Förster and non-resonant coupling.
Generally (random interaction), thermodynamical behav-
ior can be expected in the weak coupling limit.

4 Two baths

Now we go on to study non-equilibrium properties. For
this purpose we consider again the chain of N = 4 spins,
but now coupled at both ends to separate baths of differ-
ent temperature but the same λ(B) = λ(B1) = λ(B2). For
the higher temperature bath B1 we set W0→1 = 0.4λ(B),
W1→0 = 0.6λ(B), which corresponds to a bath tempera-
ture in our definition of T (B1) = 0.4. This bath is coupled
to the first spin (µ = 1) in the chain. The lower tem-
perature bath B2 (T (B2) = 0.2 with W0→1 = 0.2λ(B),
W1→0 = 0.8λ(B)) is coupled to the last spin (µ = 4) in
the chain. Again we assume a weak coupling, λ(B) = 0.01,
of the spin system to both baths and vary the internal
coupling strength of the system λ.

Here we investigate all three different types of inter-
nal couplings between the spins to test the dependence
of the interaction. Firstly we consider the coupling due to
an energy transfer only (Förster interaction H(F), CF = 1,
CNR = 0). For a strong coupling within the chain, λ = 1,
all spins get the same averaged temperature between those
of the heat baths, independently of the initial state. In
case of a weak internal interaction strength, λ = 0.01,
the two borderline spins are drawn to the temperatures of
their bath (T (1) = 0.302 and T (4) = 0.298, respectively
cf. Fig. 3). The two spins in the middle are exactly on
the same average temperature T (2) = T (3) = 0.3 inde-
pendently of the interaction strength (see Fig. 3). Thus,
in the middle of the system the conductivity diverges and
Fourier’s Law is not fulfilled. This is a well known behavior
for systems with only energy transfer coupling [5,13].

Now we couple the subsystems additionally with a non
resonant interaction, which in itself does not give rise to
any energy exchange (H(NR), CNR = 1, H(F), CF = 1). In
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Fig. 3. Temperature profile: spin chain (N = 4) with only
internal next neighbor Förster coupling (CNR = 0, CF = 1)
coupled to heat baths at both ends (lines in the bath boxes
mark the appropriate temperature of the bath T (B1) = 0.4,
T (B2) = 0.2); internal and external coupling strength λ =
λ(B) = 0.01.
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Fig. 4. Temperature profile: open system with N = 4 and N =
6 spins coupled with internal next neighbor Förster and non
resonant coupling (CNR = 1, CF = 1); internal and external
coupling strength λ = λ(B) = 0.01; bath temperatures T (B1) =
0.4, T (B2) = 0.2.

this special case we find a non vanishing temperature pro-
file independent of the initial state. In Figure 4 we show
the temperature profile for a N = 4 (N = 6) spin system
for λ = λ(B) = 0.01. For this special coupling type, we
observe the same profile even for larger λ = λ(B) <= 10.
In case of stronger internal coupling (λ(B) = 0.01) we find
again a linear profile but with a smaller gradient. Sum-
marizing in all cases of Förster coupling together with a
non-resonant coupling a non vanishing temperature gra-
dient is reached, independently of the internal coupling
strength.

Finally, the internal interactions of the system are
taken to be random next neighbor couplings. In Fig-
ure 5 temperature profiles for different internal coupling
strength λ are shown. For decreasing λ the profiles ap-
proach a linear dependence with finite gradient.

Increasing λ leads to a deviation from this linear pro-
file: In case of very strong internal couplings the system is
strongly entangled and therefore we find the spins locally
in a totally mixed state. This behavior is similar for any
random interaction.

0 5 6
N

T

0.2

0.3

0.4

0.5

1 2 3 4

T

µ

T(B1)

T(B2)

h
o
t

b
a
th

co
ld

b
a
th � λ=0.1

� λ=0.01

� λ=10

� λ=100

Fig. 5. Temperature profile: open system with internal ran-
dom next neighbor coupling for increasing internal coupling
strength λ (λ(B) = 0.01); bath temperatures T (B1) = 0.4,
T (B2) = 0.2.
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Fig. 6. Distance Df between the expected equilibrium state ρ̂eq

and the final state ρ̂f as a function of the interaction strength λ
for two different random interaction in a N = 4 spin system.

The distance between the expected stationary state
and the actual final state of the system in dependence
of internal coupling strength λ can be found in Fig-
ure 6 (N = 4). Again, the distance increases for a stronger
internal coupling. But even for very small interactions we
do not get exactly the expected stationary state: Any spe-
cific random coupling leads to a somewhat different but
approximate linear temperature profile.

5 Flux

In this section we examine the properties of the energy
flux through the considered spin chain. We consider the
change of energy of the single spin µ using the Liouville
equation (7).〈

1µ

∣∣∣∣Trν

{
dρ̂

dt

}∣∣∣∣1µ

〉
=
〈
1µ

∣∣∣Trν

{
−i[H, ρ̂] + L(B)ρ̂

}∣∣∣ 1µ

〉
.

(16)
Here, |1µ〉 is the exited state of spin µ and Trν means
the trace over all other spins ν (ν �= µ). For a spin in the
middle of the chain (µ �= 1 and µ �= N) the equation reads

d〈1µ|ρ̂|1µ〉
dt

= 2λCF (Im〈1µ−10µ|ρ̂|0µ−11µ〉
− Im〈1µ0µ+1|ρ̂|0µ1µ+1〉) . (17)
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Fig. 7. Fourier’s Law: flux J over temperature gradient ∇T
for a N = 4 spin chain with Förster and non-resonant internal
coupling (CF = 1, CNR = 1, λ = 0.1).

Where trace over all the other spins is assumed. We inter-
pret the quantity

Jµ,µ+1 = 2λCFIm 〈1µ0µ+1|ρ̂|0µ1µ+1〉 (18)

as the flux from spin µ to spin µ+1 and the above equation
shows that for the stationary state, the flux is the same
for every µ, J = Jµ,µ+1, as expected.

We now test two important properties of the flux, its
dependence on the temperature gradient and on the length
of the chain. Again we consider now a system with a
Förster and a non-resonant coupling. In Figure 7 we show
the flux J in dependence of the temperature gradient ∇T ,
the system fulfills Fourier’s law

const. = J = κ∇T. (19)

Only if ∇T is constant we can deduce the conductance κ
to be a constant material property over the homogeneous
“wire”. For the same T (B1), T (B2) the flux J is found
to decrease with the chain length N : J ∝ 1

N (see Fig. 8),
which underlines the fact that the conductance κ is a bulk
effect, not contact property.

6 Conclusion

We have studied a one-dimensional quantum system, a
spin chain, coupled to heat baths within a Lindblad for-
malism. For given local bath couplings, different interac-
tions between the subsystems in the chain have been in-
troduced, an energy transfer coupling (Förster coupling),
a non-resonant coupling and an random “unbiased” inter-
action. The chain properties have been characterized by
the profile of the local mean energy and the energy-flux,
J , respectively.

In case of coupling to only one bath the system has
been found to behave thermodynamical (i.e. flat temper-
ature profile, controlled by bath) if we use the Förster
coupling together with a non-resonant coupling. For ran-
dom couplings we find a thermodynamical behavior for
small interactions within the system only.

The scenario for heat conduction, i.e. the spin chain
coupled between a reservoir with high temperature and
a reservoir with low temperature, shows different behav-
ior in dependence of the type of the internal interactions.
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Fig. 8. The dependence of the flux J on the inverse chain
length N−1 for CF = 1, CNR = 1, λ = 0.1 and N = 3, 4, 5, 6.

For energy transfer coupling only the heat conductivity
diverges. With an additional non-resonant interaction we
find a non vanishing temperature gradient. For longer
chains the system shows the expected scaling properties.
In case of small random interactions we always get a non
vanishing temperature gradient, but for increasing interac-
tion strength local thermodynamical behavior is violated.

Even a class of small systems with just four spins may
thus show local thermodynamical behavior under quan-
tum mechanical modeling. For weakly coupled systems
the emergence of a non vanishing temperature gradient
appears to be generic if and only if the internal interaction
contains some non-resonant part. For systems with strong
internal interaction, however, the local mean energy profile
typically shows significant deviations from linear behavior.
In this case the definition of a local temperature becomes
ambiguous. However, we hope to overcome this weak cou-
pling limitation by introducing a coarse graining, i.e. by
grouping a number of subsystems together such that these
larger blocks exhibit effective weak coupling. Then a lo-
cal energy profile on this effective reduced scale could be
defined for which we expect to recover thermodynamical
behavior. This would give an answer to the question on
what local scale a temperature or local conductance could
reasonably be defined.

There are special interaction models (Förster coupling
together with non-resonant coupling), for which the profile
does not depend on the interaction strength, a thermo-
dynamical behavior can always be observed. For energy
transfer only (Förster coupling) thermodynamical behav-
ior can never be found. In this way it is possible to char-
acterize the behavior of a large class of small systems ac-
cording to their internal coupling.

Other open problems relate to the dependence of
the heat conductivity κ on temperature. In the classical
phonon theory of heat conduction in insulators there are
some expectations on this dependence based on experi-
mental results [15]. We hope to find a corresponding be-
havior in a fully quantum mechanical treatment.

We thank P. Borowski, H. Schmidt, M. Stollsteimer, and
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16. According to the Grüneisen formula, thermal expansion,

an often used indicator for temperature, is taken to be
proportional to the free energy, F (T ), see [15], p. 64 (2001)


